Effects of mechanical indentation on diffuse reflectance spectra, light transmission, and intrinsic optical properties in ex vivo porcine skin.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Mechanical indentation has been shown to increase light transmission through turbid tissue. In this study, we investigated the effects of localized indentation on the optical properties of ex vivo porcine skin specimens by dynamically monitoring diffuse reflectance spectra, light transmission, and applied load while controlling tissue thickness. STUDY DESIGN/METHODS A custom-built diffuse reflectance spectroscopy (DRS) system was used to capture diffuse reflectance spectra from tissue specimens undergoing indentation. The DRS probe was designed to perform both optical sensing and tissue indentation. A mechanical load frame was used to dynamically control probe displacement and resultant specimen thickness change while recording applied load. Diffuse reflectance spectra, as well as light transmission at 630 nm, were recorded during stress relaxation tests where tissue specimens were displaced to and held at a final thickness. Tissue optical properties were extracted from reflectance spectra using a previously established look-up table (LUT) approach. RESULTS Indentation increased light transmission through tissue during linear displacement, and continued to increase transmission during subsequent stress relaxation at constant tissue thickness. The magnitude of relative transmission increases was shown to be a function of bulk tissue compressive strain (relative thickness change). Reduced scattering coefficients calculated from the LUT at 630 nm decreased during stress relaxation, with the relative decrease in scattering also depending strongly on tissue compressive strain. Reduced scattering coefficients decreased by 12.0 ± 4.7% at 0.44 ± 0.022 compressive strain, and reduced by 35.6 ± 1.3% at 0.71 ± 0.01 compressive strain. CONCLUSION DRS can be used to capture transient changes in intrinsic tissue optical properties during mechanical loading. Mechanical indentation modifies tissue optical properties and may be harnessed as a minimally-invasive optical clearing technique to improve optical diagnostics and therapeutics.
منابع مشابه
Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements.
Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human s...
متن کاملEffect of Localized Mechanical Indentation on Skin Water Content Evaluated Using OCT
The highly disordered refractive index distribution in skin causes multiple scattering of incident light and limits optical imaging and therapeutic depth. We hypothesize that localized mechanical compression reduces scattering by expulsing unbound water from the dermal collagen matrix, increasing protein concentration and decreasing the number of index mismatch interfaces between tissue constit...
متن کاملOptical properties of porcine skin dermis between 900 nm and 1500 nm.
The weak absorption of shortwave infrared light by skin tissues between 700 and 1500 nm offers an important window for diagnosis by optical means. The strong scattering of shortwave infrared light by the skin, however, presents a challenge to the modelling of light propagation through the skin and the understanding of skin optics. We have measured the collimated and diffuse transmittance and di...
متن کاملMechanical tissue optical clearing devices: enhancement of light penetration in ex vivo porcine skin and adipose tissue.
BACKGROUND AND OBJECTIVE The complex morphological structure of tissue and associated variations in the indices of refraction of components therein, provides a highly scattering medium for visible and near-infrared wavelengths of light. Tissue optical clearing permits delivery of light deeper into tissue, potentially improving the capabilities of various light-based therapeutic techniques, such...
متن کاملStudy on the Effect of Blood Content on Diffuse Reflectance Spectra of Basal Cell Carcinoma Skin Tissue
Diffuse reflectance spectrum as a noninvasive method has been widely used to study the optical properties of cutaneous skin tissue. In this work, we optimized an eight-layered optical model of basal cell carcinoma skin tissue to study its optical properties. Based on the model, the diffuse reflectance spectra were reconstructed in visible wavelength range by Monte Carlo methods. After different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 44 4 شماره
صفحات -
تاریخ انتشار 2012